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Abstract: - Incompressible flows inside short or extended pipes present multiple industrial applications and 
their numerical study is essential for the related companies in order to control the flow variables. The present 
work is a flexible numerical approach and solution for incompressible flows inside inclined channels. Despite 
of the non-Cartesian channel bound, a saw-tooth Cartesian grid generation methodology is applied in 
combination with a finite volume scheme in order to predict the flow field as well as the recirculation zones of 
the flow. The new Cartesian approximated bound is consisted of only grid lines while solutions are provided for 
laminar viscous flows for various Reynolds numbers. The solution of Navier-Stokes equations is based on an 
artificial compressibility technique in combination with the flux-vector splitting methodology. We prove that 
the methodology is independent of the grid size, step angle or expansion ratio of the channel and the final 
results present satisfied accuracy despite of the geometry approximation which is taking place during the mesh 
generation. The utility of the algorithms is tested using related results using body fitted grid approach as well as 
the flow simulation software FLUENT.  We conclude that the below method is appropriate for industrial flows 
study, manly in power  industries, reducing the computational time and providing a simple and flexible scheme 
which easily can be used and modified by engineers without advanced knowledge in CFD.   
 
 
Keywords: - Cartesian grids, inclined pipes, saw-tooth method, incompressible flows, sub – grids, viscous 
flows.  
 
1. Introduction 
The various industrial flows inside pipes present 
significant interest due to control variable issues, 
deduction of friction, reducing turbulence or specify 
the recirculation zones. Unlimited number of 
applications is developed at Middle East Countries 
as at the Kingdom of Bahrain where the power 
industries presence is quite extended. Although all 
the related companies use computational codes in 
order to control the pipeline networks, the need of a 

simple and flexible code for the numerical 
simulation and study of the pipes’ flows is highly 
demanded, providing the ability to industrial 
engineers appropriate modify the geometries or 
optimize the flows.  
 Various CFD approaches have been presented 
concerning channels’ flows with many numerical 
approaches and applications. Torres [1] is 
presenting an accurate model for recalculating flows 
inside pipes, while many methodologies have been 
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developed for flows over backward facing steps [2, 
3, 4, and 5]. For all the researchers and engineers is 
important to investigate specific regions in curved 
pipes or in particular non-straight pipes’ parts as at 
Louda’s [6] work for branched channels, Liu’s one 
[7] for grooved channels,  or Marn’s paper [8] for 
the laminar flow in a 90o pipe bend. Nobari has 
presented an interesting numerical study for 
stationary and rotating pipes [9], straight or curved.  
The sudden expansion which is developed to 
backward facing steps, not only in perpendicular 
cases but in inclined also present major interest in 
industrial applications [2, 10]. 
Most of the above approaches use body fitted 
curvilinear or hybrid grids except of the cases of 
straight or backward facing steps (angle=90o) pipes 
where Cartesian grids are developed. This type of 
grids presents better flexibility and provides easy 
specification of the geometry description, which is 
very important for industrial flow applications.  
Interesting approaches are Coirier’s [11] who is 
used a Cartesian methodology for steady transonic 
solutions Euler’s equations and in [12] performed 
accuracy and efficiency assessments of the method. 
It’s a cell-centred method with an interesting 
treatment of boundary conditions. Additionally, 
Smith [13], develops a grid generation procedure 
that uses Cartesian embedded unstructured approach 
for complex geometries and prove that the accuracy. 
Especially at the case of numerical simulation for 
pipelines, regardless the curvilinear bounds which 
exist through any network, the Cartesian grid option 
seems to be the most appropriate.   
 As we meet at the literature, numerous 
computational approaches have been developed for 
pipes including inclined ones, which are common 
used in industries, like power plants, shipping 
repairing and maintenance, aluminium production 
etc. Louda [14], has done a very interesting work 
concerning inclined step short pipes using body 
fitted un-uniform grids, presenting very satisfied 
results regarding the flow as the analysis of the 
recirculation zones.  Kozel [15,16], presents finite 
volume and finite elements methodologies applied 
in back facing and incline step flows laminar and 
turbulent respectively. Many other researchers have 
studied the above cases giving emphasis in 
recirculating zones according to the step’s angle, 
working fluid as well as the aspect ratio of the 
channel.  
 The present work is a part of a research effort 
in order to mathematical simulate and estimate 
industrial flows inside various pipes for industrial 
applications in power industries. The major target is 
to prove that this Cartesian grid methodology is 

appropriate and accurate enough in order to predict 
any industrial flows, regardless the viscosity, type of 
flow or flow rate, as well as regardless any 
geometrical characteristic of the pipe. The grid 
generation methodology is based on a previous 
work  in Cartesian grid generation for curvilinear 
geometries which has successfully predicted various 
incompressible flows despite the approximated 
bound which has to be produced in internal as well 
as in external flows [17,18]. In order to overcome 
the huge computational memory which in some 
flow cases is developed, we apple a block nested 
refinement technique based on the sequence of sub-
grids [18]. A first approach for flows inside 
channels with only Cartesian bounds has already 
been presented providing a simple, flexible and 
accurate numerical solution for pipe flows capable 
to be used for industrial applications in power 
industries [19,20]. In this work we extend the 
methodology in pipes where the physical outer 
bound will be replaced by an approximated 
Cartesian one. The N-S equations are solved using 
finite volume analysis and the artificial 
compressibility technique in combination with flux-
vector splitting methodology [21]. The flow which 
are studied are laminar and incompressible for 
various Re numbers giving emphasis in flow 
variables and the prediction of recirculating flows. 
Particular investigation is taking place concerning 
the appropriate angle of the step in order to produce 
the desired expansion with the minimum 
recirculation simultaneously.  
 
 
2. Numerical Model Analysis 

The numerical approach of flow fields consists 
of several steps, where plenty of methods can be 
applied. In order to simulate and estimate the 
aforementioned incompressible flows we follow the 
below major steps:  

 
• Physical domain discretization 
• Cartesian grid generation  
• Governing equation discretization 
• Boundary Conditions application.  
• Numerical solution and results processing.  

 
According to the case more steps may be developed 
in order to solve the flow problem with the desired 
accuracy [22,23].  Especially at the cases of inclined 
steps a precise way of geometry description is 
needed in order to ensure the flow rate conservation 
and predict the recirculation lengths as well as the 
important points with accuracy. The method which 
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we propose is independent of the physical geometry 
description and it can be applied even if a complex 
curvilinear bound has to be approached. At the 
following sections each step of our numerical 
methodology is presented although further 
analytical details can be found in previous published 
works [18, 19, 20].    

  
 
2.1 Cartesian bound creation 
In our numerical approach, if the physical domain 
bounds are aligned with Cartesian grid lines, we 
have no need to produce any approximated bound. 
However, if our domain consists of complex or 
curvilinear bounds, we have to create a new 
approximated one in order to proceed to the grid 
generation.  

At the case of incline steps most of the outer 
physical domain bound are aligned with Cartesian 
grid lines expect one (2D - incline step line, fig. 1) 
which has to be approached due to the nature of our 
methodology. The new approximate bound is parted 
only by the use of grid lines, on x or z-axis either 
and this is our benefit. The method is used, called 
saw-tooth and is has been chosen as the most 
appropriate for the finite volume cell centered 
numerical simulation of flow fields. This method 
provides independence and automation of grid 
generation for problems with complex boundaries, 
with or without existence of an analytical function. 
The new geometrical approach is based on sets of 
data points, the original points as well as the 
approximated points of the body contour as we 
describe below.  

 

 
Fig. 1: Part of the inclined channel; original and 

approximated points of the outer bound.  

Fig.2: Original and corresponding approximated 
points at the inclined step 

 
Consequently, the first step is the creation of a 

new approximated Cartesian bound of our physical 
domain. We project the original contour of the 
curvilinear geometry onto a Cartesian grid. This 
complex contour is described by a set of data points 
on x or z-axis either (blue points, figure 2). We have 
to control if the contour segment between two 
neighbour data points varies monotonically with 
respect to both x or z directions [20]. In order to 
define the new approximated points we follow the 
below rule: if an original data point is on x-axis, we 
calculate the distance between this and its 
neighbouring grid nodes in the same direction (x). 
According the smallest distance we choose the 
corresponding grid node as the Cartesian 
approximated point, (fig. 2).  

Let’s assume that (Ox(i),Oz(j)) is a point of the 
original bound lying on a grid line with x constant.  
In order to define which one is the corresponded 
grid point and the minimum distance we calculate 
the followings:  
 
                            𝑑𝑑1 = |𝑂𝑂𝑂𝑂(𝑗𝑗) − 𝑂𝑂(𝑘𝑘)|                     (1) 

 
 
And                 𝑑𝑑2 = |𝑂𝑂𝑂𝑂(𝑗𝑗) − 𝑂𝑂(𝑘𝑘 + 1)|               (2) 

 
where z(k) and z(k+1) are neighbouring grid nodes 
lying on a x-constant grid line. We have controlled 
also that:  
 
                        𝑂𝑂(𝑘𝑘) ≤ 𝑂𝑂𝑂𝑂(𝑗𝑗) ≤ 𝑂𝑂(𝑘𝑘 + 1)             (3) 
 
By this way we define the new points, applying the 
rule of minimum distance for each set of original 
data points.  We finally connect the new points 
applying saw-tooth method, using only grid lines 
(figure 4).   
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Fig. 3: Definition of the approximated Cartesian 
points. According to the rule of minimum distance 
the original data will be replaced of Cartesian grid 

nodes. 
 
  
2.2 Mesh generation and refinement 
technique 
After the above procedure we have defined points 
on the Cartesian grid nodes which are described the 
outer bound of the physical domain. At this time the 
Cartesian grid generation is simple, excluding the 
cells that there are no more included to the flow 
field due to the above approximation. Therefore a 
new Cartesian grid is generated where all the “new 
physical” bounds lie on grid lines.  
Although for the numerical solution of an inclined 
step pipe, a uniform Cartesian grid can produce 
accurate results, a refinement technique can be also 
applied in order to reduce the computational 
memory as well as the CPU time. We apply a block 
nested methodology by the use of a hierarchical 
structured grid approach. The method is based on 
using a sequence of nested rectangular meshes in 
which numerical simulation is taking place (fig. 5). 
The whole domain is a rectangle whose sides lie in 
the coordinate directions except the case of 
including the approximated Cartesian outer bound. 
Then only three edges are straight lines while the 
fourth one is a crooked line, like in the case of the 
inclined pipe.  We simulate the domain based in as 
many refine grids as we need [23]. 
There is no specific rule concerning the location of 
the nested sub-grids. We choose the number and the 
 

 
 

Fig. 4: Method for the connection of the Cartesian 
approximated points (saw-tooth) 

 
 
exact position according to the flow application and 
if it is possible, after we apply a numerical 
simulation and solution using uniform Cartesian 
grids. By this first solution we can conclude 
concerning the critical parts of the domain where 
refinement needed to be applied.  
 
 

    
 

Fig. 5:  Block nested refinement, grid levels=2 and 
refinement factor = 2 

 
 
At the case of the inclined pipes, two are the most 
important reasons which guide us to the final 
position of the sub-grids as well as the level of the 
refinement:  
• The approximated outer bound; we need a 

refinement technique in order to reduce the 
relative error [18]. 
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• The possibility of a recirculation zone 
development, mainly after or on the step, 
according to the Reynolds number [14]. 

 

 
 

Fig. 6: Block nested refinement technique for the 
inclined short pipe, one level of refinement.  

 
 
Especially in extended pipeline networks, low 
interest is presented at the straight parts of these, 
where the domain discretization can be occurred 
using uniform Cartesian grids developing the 
minimum number of cells. At the regions with 
curvilinear bounds, as at the case of the inclined 
channels, the block nested refinement technique can 
be easily applied providing better accuracy and 
reducing the computational time simultaneously.  In 
this method the refinement is convenient to be a 
power of 2.  

The proposed nested algorithm contains 
several levels of grids. We name the coarsest level 
m=0 and each next refine sub – grid is named m+1. 
[24]. We define an integer refinement factor:  
 
                  11 // ++ == mmmm dzdzdxdxI .          (4) 
 
As we have created the coarse grid we simulate the 
flow field and calculate the variables. We have 
already defined the limits of the refinement levels as 
well as the value of the refinement factor and we 
proceed the calculation to the next refinement level. 
The sub-grids bounds must lie on a grid line of the 
previous level grid. As we use staggered grids and 

the variable values are expressed on the cell’s 
center, we consider artificial cells, all around the 
physical domain and the sub – grids too, in order to 
apply the boundary conditions. By this way we 
estimate the variables using interpolation between 
pseudo – cells and their neighbor cells for the 
velocity value.  As we have fulfilled the simulation 
in all sub-grids and we have the flow field results at 

maxm  level, we resolve the problem in the coarser 
levels again to ensure conservation. We find a new 
solution, this time by the influence of the fine levels. 
In addition we must satisfy both Dirichlet and 
Neumann matching conditions along coarse-fine 
and fine- coarse interfaces. That’s why we give the 
velocity values, but we solve for pressure. With 
nested grids, each grid is separately defined and has 
its own solution vector, so that a grid can be 
advanced independently of other grids, except for 
the determination of its boundary values. The 
information exchange between two successive 
levels is described in the next section. 

This refinement methodology is not necessary 
for the inclined step pipe numerical estimation, but 
it will provide accurate results in a reduced 
computational time. It worth to be mentioned that 
the above refinement technique is automatic and it is 
developed giving only the refinement factor as data.  

 
 
2.3 Boundary Conditions 
There are two different cases for the boundary 
conditions application according to the 
aforementioned methodology, at the inclined pipes. 
The first one is regarding the boundary conditions at 
the physical bound and the second between coarse – 
fine interfaces.  

Concerning the boundary conditions at the outer 
geometry bound, we apply Dirichlet and Neumann 
matching conditions, according to the bound 
following the direction that can be seen at figure 7.  
The boundary conditions’ application at the 
interfaces follows either the linear interpolation rule 
for the velocity values, either the definition of the 
pressure vertical derivative. We represent ),(1 kiu m+  
and ),(1 kiwm+ , the values of the velocity 
components on the sub-grid pseudo-cells. The  

),( nlu m and ),( nlwm  are the corresponding coarse 
grid values into the physical domain. At the time 
that we solve at the m grid level first and we 
proceed to the m+1 sub-grid the boundary 
conditions for the axial velocity component values, 
if we consider that we apply these along x-axis, are 
given as below:  
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Fig 7: Various ways of boundary conditions 
application according to the outer Cartesian bound 

shape. A.cells=artificial cells.  
 

 
 
            𝑢𝑢𝑚𝑚+1(𝑖𝑖,𝑘𝑘) = 𝑢𝑢𝑚𝑚+1(𝑖𝑖,𝑘𝑘 + 1) = 𝑢𝑢𝑚𝑚 (𝑙𝑙, 𝑛𝑛)  (5) 
 
And if we apply along z-axis:  
 
            𝑢𝑢𝑚𝑚+1(𝑖𝑖,𝑘𝑘) = 𝑢𝑢𝑚𝑚+1(𝑖𝑖 + 1,𝑘𝑘) = 𝑢𝑢𝑚𝑚 (𝑙𝑙, 𝑛𝑛)  (6) 
 
Regarding the case that we have to transfer the 
values between refine – coarse interfaces along x-
axis again, we apply: 
 

          ),( nlu m

2
)1,(),( 11 ++

=
++ kiukiu mm

        (7) 

And  
 

         
2

)1,(),(),(
11 ++

=
++ kiwkiwnlw

mm
m        (8) 

 
In all the above formulas the refinement factor has 
been set to be equal to two (2). 
Concerning the pressure boundary condition, we 
prefer not to apply interpolation and develop a 
different approach for this variable. Assuming that 
we simulate for an axisymmetric flow, the pressure 
vertical derivative at the interface is estimated as 
follows at equation 9.  
In fact, we can apply liner interpolation for both of 
the above flow variables with satisfied results. In 
our case we prefer to create an non - depended 
technique and a robust solution which will be freely 
created through our flow field.           
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That’s why we believe that we have to solve for the 
pressure  as many researchers do [24]. This 
approach has been successfully applied to a wide 
range of various fluid or heat transfer applications 
[25,26,27,28].  
 
 
2.4 Numerical model of the governing 
equations  

 
Our mathematical modeling numerically 

solves the incompressible governing flow equations 
which are the Navier-Stokes equations, and are 
expressed in terms of the Cartesian system of 
coordinates ( )zx, , as below: 

[ ] 






 ⋅+
∂
∂

+
∂
∂

=⋅+
∂
∂

+
∂
∂

+
∂
∂

Γ
z
sr

z
ggq 11

z
s

xRe
1

zx
e

t
αα (10) 

 
Where,   

                        T1)1,,
1

diag( = ][
β

Γ                       (11) 

after the addition of the artificial compressibility 
term β, a is a switch for the activation of the 
axisymmetric terms (α=0 is non axisymmetric, a=1 
axisymmetric flow field), Re the Reynolds number 
and Q  the unknown solution vector, 

( )Twup=Q , with p being the pressure, and (u, 
w) the velocity components in physical space. E, G,

1G  and R, S, 1S  are respectively the convective and 
diffusive flux vectors at the plane ( )zx, .  

The above N-S equations are the governing 
equations for unsteady flow. These are also used for 
the solution of steady flow fields as in our case. In 
these steady cases the time derivative is used for the 
construction of an iterative technique using the 
artificial time step in order to define our final steady 
state. Here, we extend the FVS method for solving 
incompressible flow fields implicitly. In such flow 
fields the splitting of the convective flux vectors has 
to change sense because of their non-homogeneous 
property. The values of the flux vectors at the cell 
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faces are approached by upwind schemes up to third 
order of accuracy. The unfactored discretized 
Navier-Stokes equations are solved by an implicit 
second order accurate in time scheme, using Gauss-
Seidel relaxation technique [27]. 
 
 
3. Results 
We present the numerical simulation and calculation 
of the incompressible, laminar and steady flow 
inside an inclined step short pipe using the above 
mathematical scheme. We explore our Cartesian 
grid generation efficiency in the above flow 
problem and we try to define the velocity and 
pressure distribution along the channel.  The 
calculation have been repeated for various grid 
sizes, uniform or refine nested types of grids, 
various refinement factors as well as for many 
different Reynolds values. In order to validate our 
results, some cases have been numerical simulated 
and estimated through the flow solver FLUENT. 
The comparison of the results were satisfied enough 
proving the independence of our methodology.  
 
 
3.1 Flow inside an inclined step pipe  
The numerical estimation of an inclined step pipe 
provides valuable information concerning the flow 
variables distribution as well as the recirculation 
zone data along the pipe. The methodology which 
has been presented is independent of the grid size 
and refinement factor as well as the angle of the 
step. At the specific test case the angle of the step is 
equal to 30ο, while 8 lengths have been set before 
the step and 20 lengths after that in order to fully 
develop the flow. (Figure 8). The main reason that 
this test case has been chosen is not only the 
appearance of an interesting industrial flow (power 
plants, heat exchangers applications) but also the 
close relationship of the specific case with the 
numerical modelling of the air in an urban 
environment which we intent to develop in our 
future research, and by this way we can validate our 
methodology. However this flow appears 
detachments and reattachment points as well as 
recirculation zones and boundary layers which vary 
according to the aspect ratio, the expansion ratio or 
the Reynolds number of the flow.  
The expansion ratio is equal to 0.5 while all the 
variables are estimated with the reference length to 
be equal to the diameter of the cylinder. ( refL =H) 
The dimensionless pressure p~ is defined as below:  
 

 
Fig. 8:  Physical domain of the inclined step 

channel.  

 

                               2
~

refU
Pp

ρ
=                           (12) 

 
where P the pressure, ρ the desnsity of the fluid and  

refU , the reference velocity which is equal to the 
average velocity to the inlet of the channel.  
The grid generation and the numerical method that 
was described above were used for the calculation 
of the flow inside the short pipe. Several numerical 
approaches have been developed using uniform 
grids and block nested ones. The following results 
are extracted using base grid  size 521x26, uniform 
and refined with level=1 and refinement factor I=2. 
(figures 9,10). The artificial compressibility factor is 
set equal to 1 as optimum choice for the reduction of 
the computational time [18], while the axisymmetric 
term equal to 0 as the flow problem has been 
addressed as 2-dimensional. The Re number, that 
was based on the maximum inlet velocity and the 
diameter of the inlet, was set equal to 100, 400 as 
well as to 800.  
 
 

 
 

Fig. 9: Parts of the uniform Cartesian grid 521x26 
for the numerical estimation of the inclined step 

channel.  
 

 
The boundary conditions are summarized as below, 
at table I. It is worth to be mentioned that due to the 
below outlet boundary conditions, we need to 
choose the appropriate length of the cylinder; 15 
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dimensionless lengths for Re=100 and 30 ones for 
Re=400, 800.  In order to control the accuracy of the 
proposed method, we simulated the current flow 
field by the use of un-uniform body fitted grid, sized 
using FLUENT software applying the same 
conditions for the flow fields.  
 

 
Fig. 10: Part of the used block nested grid, l=1 and 

I=2 around the step. Base grid size 211x11. 
 

 

Table I: Boundary Conditions for the channel’s 
simulation 

Upper 

bound,: 

Wall conditions: 

0,0 =
∂
∂

==
z
pwu  

 
Lower 

bound,: 

Wall conditions: 

0,0 =
∂
∂

==
z
pwu  

 
Inlet: Inlet conditions giving the value  

of the velocity:  

0,0,1 =
∂
∂

==
x
pwu  

Outlet: Outlet conditions where the 
pressure has a value: 

0,0,0 ===
∂
∂ pw

x
u

 

 
 
At the above table u and w are the axial and vertical 
components of the velocity of the fluid respectively, 
p is the pressure and x,z are the Cartesian 
coordinates. As we can see at the table, at the outlet 
boundary we give the pressure while at the inlet the 
axial velocity is given.  

In order to validate our results, we develop the 
aforementioned flow field using FLUENT software, 
521x26 grid size, applying the same conditions as 
these have been described above.  
We present the axial velocity profiles for various 
positions along the channel at the figures 11, 12 
below with very satisfied convergence.  Although 
the recirculation is low for Re=100, it can be 
detected as presented from both of the numerical 
methods (u profile, x=9). 

 
 

 
Fig. 11: Velocity profile along channel with inclined 
step angle=π/6, Re=100 on x=5 (before the step) and 

x=9 (after the step). For the Cartesian refined 
methodology based grid 211x11, I=2.  
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It’s worth to be mentioned that despite of the slight 
differences which are depicted to the above figures, 
the mass flow rate is concerned in both of the 
numerical estimations.  
 

 
 

 
 
Fig. 12: Velocity profile along channel with inclined 

step angle=π/6, Re=100 on x=9.5 and x=15 (after 
the step). For the Cartesian refined methodology 

based grid 211x11, I=2.  
 

We also present the pressure distribution produced 
by the Cartesian – artificial compressibility method 
at figure 13 as well as by FLUENT software at 
figure 14. The convergence of the pressure results 
seems to be very satisfied, following the previous 
boundary conditions which have been set. No 

problems have been occurred either due to the 
approximated Cartesian bound, either to the nested 
block sub grids.  

 
Fig. 13: Pressure distribution along the channel. 

Cartesian refined methodology with based grid size 
211x11, I=2.  

 

 
 

Fig. 14: Pressure distribution along the channel 
using FLUENT. Body fitted grid, size 521x26. 

 
Due to the fact that we have managed to estimate 
the recirculation area (low intense) in both of the 
cases with high accuracy, it seems that the 
application of the boundary conditions is 
appropriate, especially on the approximated 
Cartesian bound. Good behavior is also provided 
through the neighboring nested block grids.  
The velocity vectors are presented at figure 15, 
close to the incline step, providing a clear picture of 
the recirculation along the flow field.  
 

 
 

Fig. 15: Velocity vectors along the channel. 
FLUENT, grid size 521x26, Re=100. 
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4. Conclusions 
A numerical simulation and estimation of the flow 
inside incline step channel for incompressible flows 
is presented.  Concerning the discretization of the 
physical domain we apply a saw-tooth method while 
the final approximation of the geometrical bound is 
taking place by the use of only Cartesian grid lines. 
We generate uniform as well as refined Cartesian 
grids using block nested structured sub-grids, where 
the numerical approach demands.  We use a cell 
center discretization and the boundary transfer is 
demonstrated in the interfaces by the use of 
interpolation for the velocity and pressure values at 
the coarse – fine interfaces of the refined sub – 
grids. The method is applied for steady, laminar, 
viscous and incompressible flows. We pay attention 
at the approximated bound of the physical domain, 
in order to check the accurate prediction of the 
recirculation 
We present the numerical solution using a 
refinement block nested technique and we validate 
our methodology with the corresponded results of 
FLUENT software with very satisfied convergence. 
The velocity as well as the pressure values seems to 
be appropriate, while a low intense recirculation is 
detected after the step. By these results it seems that 
using the inclined channel with angle up to 30o the 
flow presents appropriate and quite good behavior 
without major recirculation zones or friction 
problems as these have been presented to the 
corresponded channel with angle equal to 90o [20]. 
By the other hand the Cartesian refined algorithm 
produces accurate results, despite the approximated 
bound, providing a flexible numerical approach for 
a variety of industrial applications. By the use of the 
refinement technique the accuracy of the numerical 
results is very satisfied, reducing the computational 
time and memory simultaneously. With appropriate 
choice of local block refinement multilevel solutions 
computed with this algorithm can attain the 
accuracy of the equivalent uniform fine grid at less 
computational cost (figures 11, 12). The Cartesian 
block nested methodology is simple, grid 
independent and it can be applied in any channel 
flow regarding the possible non-Cartesian bound. It 
seems that it can be a useful tool for the prediction 
of industrial flows as these are developed in power 
industries.  
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